Skip to content

mpckmeans

  • Name: cognitivefactory.interactive_clustering.clustering.mpckmeans
  • Description: Implementation of constrained mpckmeans clustering algorithms.
  • Author: Esther LENOTRE, David NICOLAZO, Marc TRUTT
  • Created: 10/09/2022
  • Licence: CeCILL-C License v1.0 (https://cecill.info/licences.fr.html)

MPCKMeansConstrainedClustering

Bases: AbstractConstrainedClustering

This class implements the MPCkmeans constrained clustering. It inherits from AbstractConstrainedClustering.

Forked from https://github.com/Behrouz-Babaki/COP-Kmeans/blob/master/copkmeans/cop_kmeans.py Modified by Esther LENOTRE git@estherlenotre.fr according to https://proceedings.mlr.press/v5/givoni09a.html

References
  • KMeans Clustering: MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability 1(14), 281–297.
  • Constrained 'MPC' KMeans Clustering: Khan, Md. A., Tamim, I., Ahmed, E., & Awal, M. A. (2012). Multiple Parameter Based Clustering (MPC): Prospective Analysis for Effective Clustering in Wireless Sensor Network (WSN) Using K-Means Algorithm. In Wireless Sensor Network (Vol. 04, Issue 01, pp. 18–24). Scientific Research Publishing, Inc. https://doi.org/10.4236/wsn.2012.41003
Example
# Import.
from scipy.sparse import csr_matrix
from cognitivefactory.interactive_clustering.constraints.binary import BinaryConstraintsManager
from cognitivefactory.interactive_clustering.clustering.dbscan import MPCKMeansConstrainedClustering

# NB : use cognitivefactory.interactive_clustering.utils to preprocess and vectorize texts.

vectors = {
    "0": csr_matrix([1.00, 0.00, 0.00, 0.00]),
    "1": csr_matrix([0.95, 0.02, 0.02, 0.01]),
    "2": csr_matrix([0.98, 0.00, 0.02, 0.00]),
    "3": csr_matrix([0.99, 0.00, 0.01, 0.00]),
    "4": csr_matrix([0.50, 0.22, 0.21, 0.07]),
    "5": csr_matrix([0.50, 0.21, 0.22, 0.07]),
    "6": csr_matrix([0.01, 0.01, 0.01, 0.97]),
    "7": csr_matrix([0.00, 0.01, 0.00, 0.99]),
    "8": csr_matrix([0.00, 0.00, 0.00, 1.00]),
}

# Define constraints manager.
constraints_manager = BinaryConstraintsManager(list_of_data_IDs=list(vectors.keys()))
constraints_manager.add_constraint(data_ID1="0", data_ID2="1", constraint_type="MUST_LINK")
constraints_manager.add_constraint(data_ID1="0", data_ID2="7", constraint_type="MUST_LINK")
constraints_manager.add_constraint(data_ID1="0", data_ID2="8", constraint_type="MUST_LINK")
constraints_manager.add_constraint(data_ID1="4", data_ID2="5", constraint_type="MUST_LINK")
constraints_manager.add_constraint(data_ID1="0", data_ID2="4", constraint_type="CANNOT_LINK")
constraints_manager.add_constraint(data_ID1="2", data_ID2="4", constraint_type="CANNOT_LINK")

cluster_model = MPCKMeansConstrainedClustering()
dict_of_predicted_clusters = cluster_model.cluster(
    constraints_manager=constraints_manager,
    vectors=vectors,
    nb_clusters=3,
)

# Print results.
print("Expected results", ";", {"0": 0, "1": 0, "2": 1, "3": 1, "4": 2, "5": 2, "6": 0, "7": 0, "8": 0,})
print("Computed results", ":", dict_of_predicted_clusters)

Warns:

Type Description
FutureWarning

clustering.mpckmeans.MPCKMeansConstrainedClustering is still in development and is not fully tested : it is not ready for production use.

Source code in src\cognitivefactory\interactive_clustering\clustering\mpckmeans.py
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
class MPCKMeansConstrainedClustering(AbstractConstrainedClustering):
    """
    This class implements the MPCkmeans constrained clustering.
    It inherits from `AbstractConstrainedClustering`.

    Forked from https://github.com/Behrouz-Babaki/COP-Kmeans/blob/master/copkmeans/cop_kmeans.py
    Modified by Esther LENOTRE <git@estherlenotre.fr> according to https://proceedings.mlr.press/v5/givoni09a.html

    References:
        - KMeans Clustering: `MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability 1(14), 281–297.`
        - Constrained _'MPC'_ KMeans Clustering: `Khan, Md. A., Tamim, I., Ahmed, E., & Awal, M. A. (2012). Multiple Parameter Based Clustering (MPC): Prospective Analysis for Effective Clustering in Wireless Sensor Network (WSN) Using K-Means Algorithm. In Wireless Sensor Network (Vol. 04, Issue 01, pp. 18–24). Scientific Research Publishing, Inc. https://doi.org/10.4236/wsn.2012.41003`

    Example:
        ```python
        # Import.
        from scipy.sparse import csr_matrix
        from cognitivefactory.interactive_clustering.constraints.binary import BinaryConstraintsManager
        from cognitivefactory.interactive_clustering.clustering.dbscan import MPCKMeansConstrainedClustering

        # NB : use cognitivefactory.interactive_clustering.utils to preprocess and vectorize texts.

        vectors = {
            "0": csr_matrix([1.00, 0.00, 0.00, 0.00]),
            "1": csr_matrix([0.95, 0.02, 0.02, 0.01]),
            "2": csr_matrix([0.98, 0.00, 0.02, 0.00]),
            "3": csr_matrix([0.99, 0.00, 0.01, 0.00]),
            "4": csr_matrix([0.50, 0.22, 0.21, 0.07]),
            "5": csr_matrix([0.50, 0.21, 0.22, 0.07]),
            "6": csr_matrix([0.01, 0.01, 0.01, 0.97]),
            "7": csr_matrix([0.00, 0.01, 0.00, 0.99]),
            "8": csr_matrix([0.00, 0.00, 0.00, 1.00]),
        }

        # Define constraints manager.
        constraints_manager = BinaryConstraintsManager(list_of_data_IDs=list(vectors.keys()))
        constraints_manager.add_constraint(data_ID1="0", data_ID2="1", constraint_type="MUST_LINK")
        constraints_manager.add_constraint(data_ID1="0", data_ID2="7", constraint_type="MUST_LINK")
        constraints_manager.add_constraint(data_ID1="0", data_ID2="8", constraint_type="MUST_LINK")
        constraints_manager.add_constraint(data_ID1="4", data_ID2="5", constraint_type="MUST_LINK")
        constraints_manager.add_constraint(data_ID1="0", data_ID2="4", constraint_type="CANNOT_LINK")
        constraints_manager.add_constraint(data_ID1="2", data_ID2="4", constraint_type="CANNOT_LINK")

        cluster_model = MPCKMeansConstrainedClustering()
        dict_of_predicted_clusters = cluster_model.cluster(
            constraints_manager=constraints_manager,
            vectors=vectors,
            nb_clusters=3,
        )

        # Print results.
        print("Expected results", ";", {"0": 0, "1": 0, "2": 1, "3": 1, "4": 2, "5": 2, "6": 0, "7": 0, "8": 0,})
        print("Computed results", ":", dict_of_predicted_clusters)
        ```

    Warns:
        FutureWarning: `clustering.mpckmeans.MPCKMeansConstrainedClustering` is still in development and is not fully tested : it is not ready for production use.
    """

    # ==============================================================================
    # INITIALIZATION
    # ==============================================================================
    def __init__(
        self,
        model: str = "MPC",
        max_iteration: int = 150,
        w: float = 1.0,
        random_seed: Optional[int] = None,
        **kargs,
    ) -> None:
        """
        The constructor for MPCKMeans Constrainted Clustering class.

        Args:
            model (str, optional): The kmeans clustering model to use. Available kmeans models are `"MPC"`. Defaults to `"MPC"`.
            max_iteration (int, optional): The maximum number of kmeans iteration for convergence. Defaults to `150`.
            w (float, optional): Weight for the constraints
            random_seed (Optional[int]): The random seed to use to redo the same clustering. Defaults to `None`.
            **kargs (dict): Other parameters that can be used in the instantiation.

        Warns:
            FutureWarning: `clustering.mpckmeans.MPCKMeansConstrainedClustering` is still in development and is not fully tested : it is not ready for production use.

        Raises:
            ValueError: if some parameters are incorrectly set.
        """

        # Deprecation warnings
        warnings.warn(
            "`clustering.mpckmeans.MPCKMeansConstrainedClustering` is still in development and is not fully tested : it is not ready for production use.",
            FutureWarning,  # DeprecationWarning
            stacklevel=2,
        )

        # Store `self.`model`.
        if model != "MPC":  # TODO use `not in {"MPC"}`.
            raise ValueError("The `model` '" + str(model) + "' is not implemented.")
        self.model: str = model

        # Store 'self.max_iteration`.
        if max_iteration < 1:
            raise ValueError("The `max_iteration` must be greater than or equal to 1.")
        self.max_iteration: int = max_iteration

        # Store `self.weight`.
        if w < 0:
            raise ValueError("The `weight` must be greater than 0.0.")
        self.w: float = w

        # Store `self.random_seed`.
        self.random_seed: Optional[int] = random_seed

        # Store `self.kargs` for clustering.
        self.kargs = kargs

        # Initialize `self.dict_of_predicted_clusters`.
        self.dict_of_predicted_clusters: Optional[Dict[str, int]] = None

        # Initialize `ml_graph` and `cl_graph`.
        self.ml_graph: Dict[str, List[str]] = {}
        self.cl_graph: Dict[str, List[str]] = {}

    # ==============================================================================
    # MAIN - CLUSTER DATA
    # ==============================================================================

    def cluster(
        self,
        constraints_manager: AbstractConstraintsManager,
        vectors: Dict[str, csr_matrix],
        nb_clusters: Optional[int],
        verbose: bool = False,
        y=None,
        **kargs,
    ) -> Dict[str, int]:
        """
        The main method used to cluster data with the KMeans model.

        Args:
            constraints_manager (AbstractConstraintsManager): A constraints manager over data IDs that will force clustering to respect some conditions during computation.
            vectors (Dict[str, csr_matrix]): The representation of data vectors. The keys of the dictionary represents the data IDs. This keys have to refer to the list of data IDs managed by the `constraints_manager`. The value of the dictionary represent the vector of each data.
            nb_clusters (Optional[int]): The number of clusters to compute. Here None.
            verbose (bool, optional): Enable verbose output. Defaults to `False`.
            y : Something.
            **kargs (dict): Other parameters that can be used in the clustering.

        Raises:
            ValueError: if `vectors` and `constraints_manager` are incompatible, or if some parameters are incorrectly set.

        Returns:
            Dict[str,int]: A dictionary that contains the predicted cluster for each data ID.
        """

        ###
        ### GET PARAMETERS
        ###

        # Store `self.constraints_manager` and `self.list_of_data_IDs`.
        if not isinstance(constraints_manager, AbstractConstraintsManager):
            raise ValueError("The `constraints_manager` parameter has to be a `AbstractConstraintsManager` type.")
        self.constraints_manager: AbstractConstraintsManager = constraints_manager
        self.list_of_data_IDs: List[str] = self.constraints_manager.get_list_of_managed_data_IDs()

        # Store `self.vectors`.
        if not isinstance(vectors, dict):
            raise ValueError("The `vectors` parameter has to be a `dict` type.")
        self.vectors: Dict[str, csr_matrix] = vectors

        # Store `self.nb_clusters`.
        if (nb_clusters is None) or (nb_clusters < 2):
            raise ValueError("The `nb_clusters` '" + str(nb_clusters) + "' must be greater than or equal to 2.")
        self.nb_clusters: int = min(nb_clusters, len(self.list_of_data_IDs))

        # TODO: Reformat vectors
        id_names: np.ndarray = np.array(list(vectors.keys()))
        X: np.ndarray = np.array(
            [
                (np.array(v).flatten() if isinstance(v, (np.ndarray, list)) else v.toarray().flatten())
                for v in vectors.values()
            ]
        )

        # TODO: reformat constraints
        self.ml: List[Tuple[int, int]] = [
            (i, j)
            for i, data_ID_i in enumerate(self.list_of_data_IDs)
            for j, data_ID_j in enumerate(self.list_of_data_IDs)
            if (
                self.constraints_manager.get_inferred_constraint(
                    data_ID1=data_ID_j,
                    data_ID2=data_ID_i,
                )
                == "MUST_LINK"
            )
        ]

        # TODO: reformat constraints
        self.cl: List[Tuple[int, int]] = [
            (i, j)
            for i, data_ID_i in enumerate(self.list_of_data_IDs)
            for j, data_ID_j in enumerate(self.list_of_data_IDs)
            if (
                self.constraints_manager.get_inferred_constraint(
                    data_ID1=data_ID_j,
                    data_ID2=data_ID_i,
                )
                == "CANNOT_LINK"
            )
        ]

        # Preprocess constraints
        ml_graph, cl_graph, neighborhoods = self.preprocess_constraints()

        # Initialize cluster centers
        cluster_centers = self._initialize_cluster_centers(X, neighborhoods)

        # Initialize metrics
        A = np.identity(X.shape[1])

        iteration = 0
        converged = False

        # Repeat until convergence
        while not converged and iteration < self.max_iteration:
            prev_cluster_centers = cluster_centers.copy()

            # Find farthest pair of points according to each metric
            farthest = self._find_farthest_pairs_of_points(X, A)

            # Assign clusters
            labels = self._assign_clusters(X, y, cluster_centers, A, farthest, ml_graph, cl_graph, self.w)

            # Estimate means
            cluster_centers = self._get_cluster_centers(X, labels)

            # Update metrics
            A = self._update_metrics(X, labels, cluster_centers, farthest, ml_graph, cl_graph, self.w)

            # Check for convergence
            cluster_centers_shift = prev_cluster_centers - cluster_centers
            converged = np.allclose(cluster_centers_shift, np.zeros(cluster_centers.shape), atol=1e-6, rtol=0)
            iteration += 1

        self.cluster_centers = cluster_centers
        self.labels = labels

        self.dict_of_predicted_clusters = {id_names[i]: self.labels[i] for i, label in enumerate(labels) if label != -1}

        self.dict_of_predicted_clusters = rename_clusters_by_order(clusters=self.dict_of_predicted_clusters)

        for data_ID in self.list_of_data_IDs:
            if data_ID not in self.dict_of_predicted_clusters.keys():
                self.dict_of_predicted_clusters[data_ID] = -1

        return self.dict_of_predicted_clusters

    # ==============================================================================
    # USEFUL FUNCTIONS
    # ==============================================================================

    def dist(self, i: int, S: List[int], points: np.ndarray) -> float:
        """
        Computes the minimum distance of a single point to a group of points.

        Args:
            i (int): Index of the single point.
            S (List[int]): List of the index of the group of points .
            points (np.ndarray): Array containing all the points.

        Returns:
            float: Minimum distance of the single to the group of points.
        """

        distances = np.array([np.sqrt(((points[i] - points[j]) ** 2).sum()) for j in S])
        return distances.min()

    def _dist(self, x: np.ndarray, y: np.ndarray, A: np.ndarray) -> float:
        """
        Computes the Mahalanobis distance between two points.
        "(x - y)^T A (x - y)"

        Args:
            x (np.ndarray): First point.
            y (np.ndarray): Second point .
            A (np.ndarray): Inverse of a covariance matrix.

        Returns:
            float: Minimum distance of the single to the group of points.
        """

        return scipy.spatial.distance.mahalanobis(x, y, A) ** 2

    def _find_farthest_pairs_of_points(self, X: np.ndarray, A: np.ndarray) -> Tuple[int, int, float]:
        """
        Finds the farthest pair of points.

        Args:
            X (np.ndarray): Set of points.
            A (np.ndarray): Positive-definite matrix used for the distances.

        Returns:
            Tuple[int, int, float]: Indexes of the farthest pair of points and the corresponding distance.
        """

        farthest = None
        n = X.shape[0]
        max_distance = 0.0

        for i in range(n):
            for j in range(n):
                if j < i:
                    distance = self._dist(X[i], X[j], A)
                    if distance > max_distance:
                        max_distance = distance
                        farthest = (i, j, distance)

        assert farthest is not None

        return farthest

    def weighted_farthest_first_traversal(self, points: np.ndarray, weights: np.ndarray, k: int) -> List[int]:
        """
        Applies weighted farthest first traversal algorithm.

        Args:
            points (np.ndarray): Set of points.
            weights (np.ndarray): Weights for the distances.
            k (int): Number of points to be traversed

        Returns:
            List[int]: Indexes of the traversed points.
        """
        traversed = []

        # Choose the first point randomly (weighted)
        i = np.random.choice(len(points), size=1, p=weights)[0]
        traversed.append(i)

        # Find remaining n - 1 maximally separated points
        for _ in range(k - 1):
            max_dst, max_dst_index = 0, None

            number_of_points = len(points)
            for j in range(number_of_points):
                if j not in traversed:
                    dst = self.dist(j, traversed, points)
                    weighted_dst = weights[j] * dst

                    if weighted_dst > max_dst:
                        max_dst = weighted_dst
                        max_dst_index = j

            traversed.append(max_dst_index)

        return traversed

    # ==============================================================================
    # INITIALIZATION OF CLUSTERS
    # ==============================================================================
    def _add_both(self, d, i, j):
        d[i].add(j)
        d[j].add(i)

    def _dfs(self, i, graph, visited, component):
        visited[i] = True
        for j in graph[i]:
            if not visited[j]:
                self._dfs(j, graph, visited, component)
        component.append(i)

    def preprocess_constraints(
        self,
    ) -> Tuple[Dict[int, Set[int]], Dict[int, Set[int]], List[List[int]]]:
        """
        Initialize each cluster.
        The choice is based on the neighborhoods created by the initial constraints.

        Raises:
            ValueError: if there is a Cannot-link constraint in conflict with a Must-link constraint involving both one same point.

        Returns:
            Tuple[Dict[int, set], Dict[int, set], List[List[int]]]:
            A new list of must-link and cannot-link constraints as well as the lambda starting neighborhoods.
        """

        # Get the list of possible indices.
        indices: List[str] = self.list_of_data_IDs.copy()

        n: int = len(indices)

        # Represent the graphs using adjacency-lists.
        ml_graph: Dict[int, Set[int]] = {}
        cl_graph: Dict[int, Set[int]] = {}

        for k in range(n):
            ml_graph[k] = set()
            cl_graph[k] = set()

        for data_ID_i1, data_ID_j1 in self.ml:
            ml_graph[data_ID_i1].add(data_ID_j1)
            ml_graph[data_ID_j1].add(data_ID_i1)

        for data_ID_i2, data_ID_j2 in self.cl:
            cl_graph[data_ID_i2].add(data_ID_j2)
            cl_graph[data_ID_j2].add(data_ID_i2)

        visited = [False for _ in range(n)]
        neighborhoods = []
        for index in range(n):
            if not visited[index] and ml_graph[index]:
                component: List[int] = []
                self._dfs(index, ml_graph, visited, component)
                for x1 in component:
                    for x2 in component:
                        if x1 != x2:
                            ml_graph[x1].add(x2)
                neighborhoods.append(component)

        for data_ID_i3, data_ID_j3 in self.cl:
            for x in ml_graph[data_ID_i3]:
                self._add_both(cl_graph, x, data_ID_j3)

            for y in ml_graph[data_ID_j3]:
                self._add_both(cl_graph, data_ID_i3, y)

            for a in ml_graph[data_ID_i3]:
                for b in ml_graph[data_ID_j3]:
                    self._add_both(cl_graph, a, b)

        for index_1, _ in ml_graph.items():
            for index_2 in ml_graph[index_1]:
                if index_2 != index_1 and index_2 in cl_graph[index_1]:
                    raise ValueError("Inconsistent constraints between " + str(index_1) + " and " + str(index_2))

        return ml_graph, cl_graph, neighborhoods

    def _initialize_cluster_centers(self, X: np.ndarray, neighborhoods: List[List[int]]) -> np.ndarray:
        """
        Initialises cluster centers.

        Args:
            X (np.ndarray): Set of points.
            neighborhoods (List[List[int]]): Lists of neighbors for each point.

        Returns:
            np.ndarray: Computed centers.
        """

        neighborhood_centers = np.array([X[neighborhood].mean(axis=0) for neighborhood in neighborhoods])
        neighborhood_sizes = np.array([len(neighborhood) for neighborhood in neighborhoods])
        neighborhood_weights = neighborhood_sizes / neighborhood_sizes.sum()

        # print('\t', len(neighborhoods), neighborhood_sizes)

        if len(neighborhoods) > self.nb_clusters:
            cluster_centers = neighborhood_centers[
                self.weighted_farthest_first_traversal(neighborhood_centers, neighborhood_weights, self.nb_clusters)
            ]
        else:
            if neighborhoods:
                cluster_centers = neighborhood_centers
            else:
                cluster_centers = np.empty((0, X.shape[1]))

            if len(neighborhoods) < self.nb_clusters:
                remaining_cluster_centers = X[
                    np.random.choice(X.shape[0], self.nb_clusters - len(neighborhoods), replace=False), :
                ]
                cluster_centers = np.concatenate([cluster_centers, remaining_cluster_centers])

        return cluster_centers

    # ==============================================================================
    # COMPUTE CLUSTERS
    # ==============================================================================

    def _f_m(self, X: np.ndarray, i: int, j: int, A) -> float:
        return self._dist(X[i], X[j], A)

    def _f_c(self, X: np.ndarray, i: int, j: int, A, farthest) -> float:
        return farthest[2] - self._dist(X[i], X[j], A)

    def _objective_fn(
        self, X: np.ndarray, i: int, labels, cluster_centers, cluster_id, A, farthest, ml_graph, cl_graph, w
    ) -> float:
        sign, logdet = np.linalg.slogdet(A)
        log_det_a = sign * logdet

        if log_det_a == np.inf:
            log_det_a = 0

        term_d: float = self._dist(X[i], cluster_centers[cluster_id], A) - log_det_a

        term_m: float = 0
        for j in ml_graph[i]:
            if labels[j] >= 0 and labels[j] != cluster_id:
                term_m += 2 * w * self._f_m(X, i, j, A)

        term_c: float = 0
        for k in cl_graph[i]:
            if labels[k] == cluster_id:
                # assert self._f_c(i, k, A, farthest) >= 0
                term_c += 2 * w * self._f_c(X, i, k, A, farthest)

        return term_d + term_m + term_c

    def _assign_clusters(self, X, y, cluster_centers, A, farthest, ml_graph, cl_graph, w):
        labels = np.full(X.shape[0], fill_value=-1)

        index = list(range(X.shape[0]))
        np.random.shuffle(index)
        for i in index:
            labels[i] = np.argmin(
                [
                    self._objective_fn(X, i, labels, cluster_centers, cluster_id, A, farthest, ml_graph, cl_graph, w)
                    for cluster_id, cluster_center in enumerate(cluster_centers)
                ]
            )

        # Handle empty clusters
        n_samples_in_cluster = np.bincount(labels, minlength=self.nb_clusters)
        empty_clusters = np.where(n_samples_in_cluster == 0)[0]

        for empty_cluster_id in empty_clusters:
            # Get clusters that have at least 2 points and can give one of them to another cluster
            filled_clusters = np.where(n_samples_in_cluster > 1)[0]

            # Get points from filled_clusters, and compute distance to their center
            distances_to_clusters: Dict[str, float] = {}

            for cluster_id in filled_clusters:
                available_cluster_points = np.where(labels == cluster_id)[0]
                for point in available_cluster_points:
                    distances_to_clusters[point] = self._dist(X[point], cluster_centers[cluster_id], A)

            # Fill empty clusters with the farthest points regarding their respective centers
            filling_point: float = max(distances_to_clusters, key=distances_to_clusters.get)
            labels[filling_point] = empty_cluster_id

            n_samples_in_cluster = np.bincount(labels, minlength=10)

        empty_clusters = np.where(n_samples_in_cluster == 0)[0]

        if empty_clusters.size:
            # print("Empty clusters")
            raise ValueError("Empty Clusters Exception")
        return labels

    def _get_cluster_centers(self, X, labels):
        return np.array([X[labels == i].mean(axis=0) for i in range(self.nb_clusters)])

    # ==============================================================================
    # UPDATE METRICS
    # ==============================================================================

    def _update_metrics(self, X, labels, cluster_centers, farthest, ml_graph, cl_graph, w):
        N, D = X.shape
        A = np.zeros((D, D))

        for d in range(D):
            term_x = np.sum([(x[d] - cluster_centers[labels[i], d]) ** 2 for i, x in enumerate(X)])

            term_m = 0
            for i in range(N):
                for j in ml_graph[i]:
                    if labels[i] != labels[j]:
                        term_m += 1 / 2 * w * (X[i, d] - X[j, d]) ** 2

            term_c = 0
            for k in range(N):
                for m in cl_graph[k]:
                    if labels[k] == labels[m]:
                        tmp = (X[farthest[0], d] - X[farthest[1], d]) ** 2 - (X[k, d] - X[m, d]) ** 2
                        term_c += w * max(tmp, 0)

            # print('term_x', term_x, 'term_m', term_m, 'term_c', term_c)

            A[d, d] = N / max(term_x + term_m + term_c, 1e-9)

        return A

__init__(model='MPC', max_iteration=150, w=1.0, random_seed=None, **kargs)

The constructor for MPCKMeans Constrainted Clustering class.

Parameters:

Name Type Description Default
model str

The kmeans clustering model to use. Available kmeans models are "MPC". Defaults to "MPC".

'MPC'
max_iteration int

The maximum number of kmeans iteration for convergence. Defaults to 150.

150
w float

Weight for the constraints

1.0
random_seed Optional[int]

The random seed to use to redo the same clustering. Defaults to None.

None
**kargs dict

Other parameters that can be used in the instantiation.

{}

Warns:

Type Description
FutureWarning

clustering.mpckmeans.MPCKMeansConstrainedClustering is still in development and is not fully tested : it is not ready for production use.

Raises:

Type Description
ValueError

if some parameters are incorrectly set.

Source code in src\cognitivefactory\interactive_clustering\clustering\mpckmeans.py
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def __init__(
    self,
    model: str = "MPC",
    max_iteration: int = 150,
    w: float = 1.0,
    random_seed: Optional[int] = None,
    **kargs,
) -> None:
    """
    The constructor for MPCKMeans Constrainted Clustering class.

    Args:
        model (str, optional): The kmeans clustering model to use. Available kmeans models are `"MPC"`. Defaults to `"MPC"`.
        max_iteration (int, optional): The maximum number of kmeans iteration for convergence. Defaults to `150`.
        w (float, optional): Weight for the constraints
        random_seed (Optional[int]): The random seed to use to redo the same clustering. Defaults to `None`.
        **kargs (dict): Other parameters that can be used in the instantiation.

    Warns:
        FutureWarning: `clustering.mpckmeans.MPCKMeansConstrainedClustering` is still in development and is not fully tested : it is not ready for production use.

    Raises:
        ValueError: if some parameters are incorrectly set.
    """

    # Deprecation warnings
    warnings.warn(
        "`clustering.mpckmeans.MPCKMeansConstrainedClustering` is still in development and is not fully tested : it is not ready for production use.",
        FutureWarning,  # DeprecationWarning
        stacklevel=2,
    )

    # Store `self.`model`.
    if model != "MPC":  # TODO use `not in {"MPC"}`.
        raise ValueError("The `model` '" + str(model) + "' is not implemented.")
    self.model: str = model

    # Store 'self.max_iteration`.
    if max_iteration < 1:
        raise ValueError("The `max_iteration` must be greater than or equal to 1.")
    self.max_iteration: int = max_iteration

    # Store `self.weight`.
    if w < 0:
        raise ValueError("The `weight` must be greater than 0.0.")
    self.w: float = w

    # Store `self.random_seed`.
    self.random_seed: Optional[int] = random_seed

    # Store `self.kargs` for clustering.
    self.kargs = kargs

    # Initialize `self.dict_of_predicted_clusters`.
    self.dict_of_predicted_clusters: Optional[Dict[str, int]] = None

    # Initialize `ml_graph` and `cl_graph`.
    self.ml_graph: Dict[str, List[str]] = {}
    self.cl_graph: Dict[str, List[str]] = {}

cluster(constraints_manager, vectors, nb_clusters, verbose=False, y=None, **kargs)

The main method used to cluster data with the KMeans model.

Parameters:

Name Type Description Default
constraints_manager AbstractConstraintsManager

A constraints manager over data IDs that will force clustering to respect some conditions during computation.

required
vectors Dict[str, csr_matrix]

The representation of data vectors. The keys of the dictionary represents the data IDs. This keys have to refer to the list of data IDs managed by the constraints_manager. The value of the dictionary represent the vector of each data.

required
nb_clusters Optional[int]

The number of clusters to compute. Here None.

required
verbose bool

Enable verbose output. Defaults to False.

False
y

Something.

None
**kargs dict

Other parameters that can be used in the clustering.

{}

Raises:

Type Description
ValueError

if vectors and constraints_manager are incompatible, or if some parameters are incorrectly set.

Returns:

Type Description
Dict[str, int]

Dict[str,int]: A dictionary that contains the predicted cluster for each data ID.

Source code in src\cognitivefactory\interactive_clustering\clustering\mpckmeans.py
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
def cluster(
    self,
    constraints_manager: AbstractConstraintsManager,
    vectors: Dict[str, csr_matrix],
    nb_clusters: Optional[int],
    verbose: bool = False,
    y=None,
    **kargs,
) -> Dict[str, int]:
    """
    The main method used to cluster data with the KMeans model.

    Args:
        constraints_manager (AbstractConstraintsManager): A constraints manager over data IDs that will force clustering to respect some conditions during computation.
        vectors (Dict[str, csr_matrix]): The representation of data vectors. The keys of the dictionary represents the data IDs. This keys have to refer to the list of data IDs managed by the `constraints_manager`. The value of the dictionary represent the vector of each data.
        nb_clusters (Optional[int]): The number of clusters to compute. Here None.
        verbose (bool, optional): Enable verbose output. Defaults to `False`.
        y : Something.
        **kargs (dict): Other parameters that can be used in the clustering.

    Raises:
        ValueError: if `vectors` and `constraints_manager` are incompatible, or if some parameters are incorrectly set.

    Returns:
        Dict[str,int]: A dictionary that contains the predicted cluster for each data ID.
    """

    ###
    ### GET PARAMETERS
    ###

    # Store `self.constraints_manager` and `self.list_of_data_IDs`.
    if not isinstance(constraints_manager, AbstractConstraintsManager):
        raise ValueError("The `constraints_manager` parameter has to be a `AbstractConstraintsManager` type.")
    self.constraints_manager: AbstractConstraintsManager = constraints_manager
    self.list_of_data_IDs: List[str] = self.constraints_manager.get_list_of_managed_data_IDs()

    # Store `self.vectors`.
    if not isinstance(vectors, dict):
        raise ValueError("The `vectors` parameter has to be a `dict` type.")
    self.vectors: Dict[str, csr_matrix] = vectors

    # Store `self.nb_clusters`.
    if (nb_clusters is None) or (nb_clusters < 2):
        raise ValueError("The `nb_clusters` '" + str(nb_clusters) + "' must be greater than or equal to 2.")
    self.nb_clusters: int = min(nb_clusters, len(self.list_of_data_IDs))

    # TODO: Reformat vectors
    id_names: np.ndarray = np.array(list(vectors.keys()))
    X: np.ndarray = np.array(
        [
            (np.array(v).flatten() if isinstance(v, (np.ndarray, list)) else v.toarray().flatten())
            for v in vectors.values()
        ]
    )

    # TODO: reformat constraints
    self.ml: List[Tuple[int, int]] = [
        (i, j)
        for i, data_ID_i in enumerate(self.list_of_data_IDs)
        for j, data_ID_j in enumerate(self.list_of_data_IDs)
        if (
            self.constraints_manager.get_inferred_constraint(
                data_ID1=data_ID_j,
                data_ID2=data_ID_i,
            )
            == "MUST_LINK"
        )
    ]

    # TODO: reformat constraints
    self.cl: List[Tuple[int, int]] = [
        (i, j)
        for i, data_ID_i in enumerate(self.list_of_data_IDs)
        for j, data_ID_j in enumerate(self.list_of_data_IDs)
        if (
            self.constraints_manager.get_inferred_constraint(
                data_ID1=data_ID_j,
                data_ID2=data_ID_i,
            )
            == "CANNOT_LINK"
        )
    ]

    # Preprocess constraints
    ml_graph, cl_graph, neighborhoods = self.preprocess_constraints()

    # Initialize cluster centers
    cluster_centers = self._initialize_cluster_centers(X, neighborhoods)

    # Initialize metrics
    A = np.identity(X.shape[1])

    iteration = 0
    converged = False

    # Repeat until convergence
    while not converged and iteration < self.max_iteration:
        prev_cluster_centers = cluster_centers.copy()

        # Find farthest pair of points according to each metric
        farthest = self._find_farthest_pairs_of_points(X, A)

        # Assign clusters
        labels = self._assign_clusters(X, y, cluster_centers, A, farthest, ml_graph, cl_graph, self.w)

        # Estimate means
        cluster_centers = self._get_cluster_centers(X, labels)

        # Update metrics
        A = self._update_metrics(X, labels, cluster_centers, farthest, ml_graph, cl_graph, self.w)

        # Check for convergence
        cluster_centers_shift = prev_cluster_centers - cluster_centers
        converged = np.allclose(cluster_centers_shift, np.zeros(cluster_centers.shape), atol=1e-6, rtol=0)
        iteration += 1

    self.cluster_centers = cluster_centers
    self.labels = labels

    self.dict_of_predicted_clusters = {id_names[i]: self.labels[i] for i, label in enumerate(labels) if label != -1}

    self.dict_of_predicted_clusters = rename_clusters_by_order(clusters=self.dict_of_predicted_clusters)

    for data_ID in self.list_of_data_IDs:
        if data_ID not in self.dict_of_predicted_clusters.keys():
            self.dict_of_predicted_clusters[data_ID] = -1

    return self.dict_of_predicted_clusters

dist(i, S, points)

Computes the minimum distance of a single point to a group of points.

Parameters:

Name Type Description Default
i int

Index of the single point.

required
S List[int]

List of the index of the group of points .

required
points ndarray

Array containing all the points.

required

Returns:

Name Type Description
float float

Minimum distance of the single to the group of points.

Source code in src\cognitivefactory\interactive_clustering\clustering\mpckmeans.py
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
def dist(self, i: int, S: List[int], points: np.ndarray) -> float:
    """
    Computes the minimum distance of a single point to a group of points.

    Args:
        i (int): Index of the single point.
        S (List[int]): List of the index of the group of points .
        points (np.ndarray): Array containing all the points.

    Returns:
        float: Minimum distance of the single to the group of points.
    """

    distances = np.array([np.sqrt(((points[i] - points[j]) ** 2).sum()) for j in S])
    return distances.min()

preprocess_constraints()

Initialize each cluster. The choice is based on the neighborhoods created by the initial constraints.

Raises:

Type Description
ValueError

if there is a Cannot-link constraint in conflict with a Must-link constraint involving both one same point.

Returns:

Type Description
Dict[int, Set[int]]

Tuple[Dict[int, set], Dict[int, set], List[List[int]]]:

Dict[int, Set[int]]

A new list of must-link and cannot-link constraints as well as the lambda starting neighborhoods.

Source code in src\cognitivefactory\interactive_clustering\clustering\mpckmeans.py
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
def preprocess_constraints(
    self,
) -> Tuple[Dict[int, Set[int]], Dict[int, Set[int]], List[List[int]]]:
    """
    Initialize each cluster.
    The choice is based on the neighborhoods created by the initial constraints.

    Raises:
        ValueError: if there is a Cannot-link constraint in conflict with a Must-link constraint involving both one same point.

    Returns:
        Tuple[Dict[int, set], Dict[int, set], List[List[int]]]:
        A new list of must-link and cannot-link constraints as well as the lambda starting neighborhoods.
    """

    # Get the list of possible indices.
    indices: List[str] = self.list_of_data_IDs.copy()

    n: int = len(indices)

    # Represent the graphs using adjacency-lists.
    ml_graph: Dict[int, Set[int]] = {}
    cl_graph: Dict[int, Set[int]] = {}

    for k in range(n):
        ml_graph[k] = set()
        cl_graph[k] = set()

    for data_ID_i1, data_ID_j1 in self.ml:
        ml_graph[data_ID_i1].add(data_ID_j1)
        ml_graph[data_ID_j1].add(data_ID_i1)

    for data_ID_i2, data_ID_j2 in self.cl:
        cl_graph[data_ID_i2].add(data_ID_j2)
        cl_graph[data_ID_j2].add(data_ID_i2)

    visited = [False for _ in range(n)]
    neighborhoods = []
    for index in range(n):
        if not visited[index] and ml_graph[index]:
            component: List[int] = []
            self._dfs(index, ml_graph, visited, component)
            for x1 in component:
                for x2 in component:
                    if x1 != x2:
                        ml_graph[x1].add(x2)
            neighborhoods.append(component)

    for data_ID_i3, data_ID_j3 in self.cl:
        for x in ml_graph[data_ID_i3]:
            self._add_both(cl_graph, x, data_ID_j3)

        for y in ml_graph[data_ID_j3]:
            self._add_both(cl_graph, data_ID_i3, y)

        for a in ml_graph[data_ID_i3]:
            for b in ml_graph[data_ID_j3]:
                self._add_both(cl_graph, a, b)

    for index_1, _ in ml_graph.items():
        for index_2 in ml_graph[index_1]:
            if index_2 != index_1 and index_2 in cl_graph[index_1]:
                raise ValueError("Inconsistent constraints between " + str(index_1) + " and " + str(index_2))

    return ml_graph, cl_graph, neighborhoods

weighted_farthest_first_traversal(points, weights, k)

Applies weighted farthest first traversal algorithm.

Parameters:

Name Type Description Default
points ndarray

Set of points.

required
weights ndarray

Weights for the distances.

required
k int

Number of points to be traversed

required

Returns:

Type Description
List[int]

List[int]: Indexes of the traversed points.

Source code in src\cognitivefactory\interactive_clustering\clustering\mpckmeans.py
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
def weighted_farthest_first_traversal(self, points: np.ndarray, weights: np.ndarray, k: int) -> List[int]:
    """
    Applies weighted farthest first traversal algorithm.

    Args:
        points (np.ndarray): Set of points.
        weights (np.ndarray): Weights for the distances.
        k (int): Number of points to be traversed

    Returns:
        List[int]: Indexes of the traversed points.
    """
    traversed = []

    # Choose the first point randomly (weighted)
    i = np.random.choice(len(points), size=1, p=weights)[0]
    traversed.append(i)

    # Find remaining n - 1 maximally separated points
    for _ in range(k - 1):
        max_dst, max_dst_index = 0, None

        number_of_points = len(points)
        for j in range(number_of_points):
            if j not in traversed:
                dst = self.dist(j, traversed, points)
                weighted_dst = weights[j] * dst

                if weighted_dst > max_dst:
                    max_dst = weighted_dst
                    max_dst_index = j

        traversed.append(max_dst_index)

    return traversed